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In this paper, a new formulation based on the method of fundamental solutions for two/three-
-dimensional steady-state heat conduction problems involving internal curved line/surface
heat sources is presented. Arbitrary shapes and non-uniform intensities of the curved heat
sources can be modeled by an assemblage of several parts with quadratic variations. The
presented mesh-free modeling does not require any internal points as in domain methods.
Four numerical examples are studied to verify the validity and efficiency of the proposed
method. Our analyses have shown that the presented mesh-free formulation is very efficient
in comparison with conventional boundary or domain solution techniques.
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1. Introduction

Heat conduction and thermoelasticity involving boundary or domain heat sources have been
subject of many studies in the last years, and they are still active areas of researches (e.g. Ro-
gowski, 2016; Hidayat et al., 2017). In real applications, it is quite often to have internal heat
sources concentrated on points, lines or curved paths due to electrical heating or some other heat
sources like laser beams. As examples, we can mention infrared heating, a method of electric he-
ating that is frequently used in the metallurgy and textile industries, laser beam heating/welding
that is used in automotive and aerospace industries, and friction heating for material processing
and joining. Despite several analytical solutions for simple problems involving concentrated heat
sources (e.g. Chao and Tan, 2000; Han and Hasebe, 2002), practical problems with complicated
conditions still need to resort to numerical tools. The accuracy analysis of the domain solution
methods such as the finite element method (FEM) depends on the mesh density especially near
the concentrated heat source. As powerful alternative approaches, the boundary methods such
as the boundary element method (BEM) and the method of fundamental solutions (MFS) only
require boundary discretization.

To date, the BEM has been effectively used to solve direct and inverse problems containing
concentrated sources of heat generation. Le Niliot (1998) proposed a boundary element formu-
lation for identification of the intensity of point heat sources in diffusive systems. In another
work, Le Niliot and Lefèvre (2001) proposed a BEM to identify the location and strength of
multiple point heat sources in a transient heat conduction problem. Karami and Hematiyan
(2000a,b) proposed a formulation based on the BEM for direct and inverse analyses of heat
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conduction problems containing concentrated sources of heat generation. They presented an
exact implementation of a source of heat generation concentrated on a point or a line in the
BEM formulation. Shiah et al. (2005) analyzed two-dimensional thermo-mechanical problems
containing point sources using the BEM. They could solve the problem with boundary-only
discretization. In another research, Shiah et al. (2006) used the direct domain mapping (DDM)
technique to analyze 2D and 3D heat conduction problems in composites consisting of multi-
ple anisotropic media with embedded point heat sources. Hematiyan et al. (2011) presented a
formulation based on the BEM for analysis of two and three dimensional thermo-elastic pro-
blems involving point, line and area heat sources. They only employed boundary discretiza-
tion in their formulation. However, their proposed formulation considered only straight line
and flat surface heat sources with a linear variation of the heat source intensity. Moham-
madi et al. (2016) used the BEM for analysis of two- and three-dimensional thermo-elastic
problems involving arbitrary curved line heat sources. They effectively solved the problem
without considering any internal points/cells; but they did not consider curved surface heat
sources.

The present work uses the MFS to analyze problems of 2D/3D heat conduction involving
internal concentrated heat sources. In this paper, the MFS, a widely applied meshless method,
is shown to be very efficient for the analysis on account of which the benefit is that no inter-
nal points/nodes are required for the modeling. Similar to the BEM, the MFS is applicable
when a fundamental solution of the problem is known. However, the important advantage of
the MFS over the BEM is that the MFS is an integration-free method and it can be easi-
ly implemented for problems especially in three-dimensional and irregular domains. The basic
idea of the MFS is to approximate the solution as a linear combination of fundamental so-
lutions. The singularities (sources) of the fundamental solutions are located outside the phy-
sical domain of the problem. The MFS solutions exactly satisfy governing equations of the
problem and approximately satisfy boundary conditions. In the study carried out by Fair-
weather and Karageorghis (1998), the development of the MFS in the past three decades was
explained.

The equation governing steady-state heat conduction in a medium with a heat source is
the standard Poisson equation. To solve Poisson’s equation using the MFS, a particular so-
lution corresponding to the heat source term in addition to a homogeneous solution of the
Laplace equation should be found. Two important methods proposed to calculate this par-
ticular solution are the Atkinson method (1985) and the dual reciprocity method (DRM)
(Partridge et al., 1992). In Atkinson’s method, the particular solution is taken to be a New-
ton potential and is obtained by evaluating a domain integral. Poullikkas et al. (1998) used
this method for solving inhomogeneous harmonic and biharmonic problems. In the DRM, the
particular solution is approximated by a series of basis solutions. As an example, Golberg
(1995) used this method to solve Poisson’s equation without a boundary or domain discre-
tization.

In this work, the MFS is formulated for 2D/3D problems of heat conduction involving in-
ternal heat sources concentrated on curved lines/surfaces. Although the MFS has been widely
used for analysis of heat conduction problems in different conditions (e.g. Ahmadabadi et al.,
2009; Kołodziej et al., 2010; Mierzwiczak and Kołodziej, 2012); however, to the authors’ know-
ledge, the MFS formulation for analysis of internal curve line/surface heat sources has not been
presented yet. The method presented here can be simply employed without considering any
internal points/nodes and, therefore, it preserves the attractiveness of the MFS as a boundary-
-type mesh-free method. Several two- and three-dimensional numerical examples are presented
at the end to show that the proposed formulation is very efficient to yield accurate results in
comparison with the BEM and FEM.
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2. MFS formulation for steady-state heat conduction in a domain including heat
sources

Consider an isotropic medium Ω with its boundary Γ (Fig. 1). In the presence of heat sources,
the governing equation of steady-state heat conduction can be expressed as follows

∇
2τ(x) = −

s(x)

k
x ∈ Ω (2.1)

where ∇2 represents the Laplace operator, τ is temperature, k is thermal conductivity, and
s(x) is a known function describing the heat source distribution.

Fig. 1. Domain Ω, boundary Γ and pseudo boundary Γ ′

Boundary condition in a generalized form can be written as follows

f1τ + f2
∂τ

∂n
= f3 on Γ (2.2)

where f1, f2 and f3 are given functions on the boundary and n is the normal direction.
In the MFS, the solution to Poisson equation (2.1) is approximated by a linear combination

of fundamental solutions of the Laplace equation and a particular solution

τ(x) =
N
∑

j=1

ajτ
∗(x, ξj) + τp(x) (2.3)

where ξj and aj are the known location and unknown intensity of the j-th source located on
the pseudo-boundary Γ ′ (Fig. 1), respectively. x is a point in the domain or on the boundary of
the solution domain, and N is the number of sources. τ∗ represents the fundamental solution to
the Laplace operator that is given as follows

τ∗(x, ξj) =















−1

2π
ln(r(x, ξj)) for 2D

1

4πr(x, ξj)
for 3D

(2.4)

where r(x, ξj) is the distance between the field point x and the source point ξj . τp(x) is the
particular solution to equation (2.1) associated to the heat source function s(x) that can be
concentrated on a part of the domain or distributed over the entire domain. The particular
solution can be obtained by constructing the associated Newton potential in the following domain
integral form

τp(x) =
1

k

∫

Ω

s(ξ)τ∗(x, ξ) dV (ξ) (2.5)
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Efficient evaluation of this domain integral is very important in the MFS to maintain the attrac-
tiveness of the method. If one can evaluate the domain integral in Eq. (2.5) without considering
any internal cells/points, the attractiveness of the MFS is preserved.

The constants aj (with the unit m
◦C in the SI system) are unknown intensities of the

sources and they have to be found. To find these unknowns, we consider N boundary points
y1,y2, . . . ,yN that are a priori located on Γ and collocate the corresponding boundary condition
at these points. From Eqs. (2.2) and (2.3), the following equation is obtained

N
∑

j=1

aj
[

f1(yi)τ
∗(yi, ξj) + f2(yi)

∂τ∗(yi, ξj)

∂n

]

= f3(yi)

−

[

f1(yi)τp(yi) + f2(yi)
∂τp(yi)

∂n

]

i = 1, 2, . . . , N

(2.6)

which represents a system of N linear equations with N unknowns. In general, one can write
system (2.6) as follows

AX = F (2.7)

where the components of the matrix A ∈ RN×N and the vectors F ∈ RN and X ∈ RN are
expressed as follows

Aij = f1(yi)τ
∗(yi, ξj) + f2(yi)

∂τ∗(yi, ξj)

∂n

Fi = f3(yi)−
[

f1(yi)τp(yi) + f2(yi)
∂τp(yi)

∂n

]

Xi = ai

(2.8)

By selecting a suitable configuration for boundary and source points, Eq. (2.7) can be solved by
standard methods such as the Gaussian elimination method.

In the next Section, the method for computation of the particular solution τp(x) using Eq.
(2.5) for the special case of heat sources concentrated on a curved line/surface is described.

3. Formulations for heat sources concentrated on a curved line/surface

In this Section, particular solutions associated to curved line/surface heat sources in the MFS
are presented. For the 2D case, curved line sources, while for the 3D case, both curved line and
curved surface sources are considered.

3.1. Curved line heat source in 2D problems

At first, the formulation for a curved line heat source with a quadratic shape is presented.
It is also assumed that the intensity of the source has a quadratic variation along the heat
source. An arbitrary curved line heat source can be modeled by several quadratic heat sources.
A domain including a general curved line heat source and a part of the source modeled as a
quadratic line heat source is illustrated in Fig. 2. Each quadratic line heat source is discretized
by three points. The intensity per unit length of the source at the starting point (x1, y1), middle
point (x2, y2), and end point (x3, y3) are represented by g1, g2, g3, respectively.

Assuming a quadratic variation for the intensity of the heat source, s(x) can be given as
follows

s(η) = N1g1 +N2g2 +N3g3 (3.1)
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Fig. 2. An arbitrary curved line heat source modeled as several quadratic line heat sources

where the quadratic shape functions Ni are

N1 =
1

2
η(η − 1) N2 = −(η + 1)(η − 1) N3 =

1

2
η(η + 1) (3.2)

where η is a dimensionless local coordinate aligned with the quadratic segment that varies from
−1 to 1.
Domain integral (2.5) for the quadratic line heat source can be expressed as follows

τp(x) =

∫

L

s(ξ)

k
τ∗(x, ξ) dl (3.3)

where dl is an infinitesimal element along the quadratic line heat source. Substituting τ∗ in the
2D case from Eq. (2.4) into Eq. (3.3) results in

τp(x) =
−1

2πk

∫

l

s(ξ) ln[r(x, ξ)] dl (3.4)

where r(x, ξ) =
√

(x− xs)2 + (y − ys)2 is the distance between the field point x = (x, y) and
the source points ξ = (xs, ys) on the quadratic line heat source. xs and ys can be expressed in
terms of the three points of the quadratic line heat source as follows

xs = (N1x1 +N2x2 +N3x3) ys = (N1y1 +N2y2 +N3y3) (3.5)

Using Eqs. (3.5), the infinitesimal element dl in Eq. (3.4) can be expressed as

dl =
√

dx2s + dy
2
s = Jdη (3.6)

where J is Jacobian which can be expressed as

J =

√

(

x1
dN1
dη
+ x2
dN2
dη
+ x3
dN3
dη

)2
+
(

y1
dN1
dη
+ y2
dN2
dη
+ y3
dN3
dη

)2
(3.7)

Substituting Eqs. (3.1) and (3.6) into Eq. (3.4) results in

τp(x) =
−1

2πk

1
∫

−1

(N1g1 +N2g2 +N3g3) ln[r(η)]J dη (3.8)

The integral in Eq. (3.8) can be calculated using conventional numerical integration methods
such as the Gaussian quadrature method (GQM). It should be noted that if the field point
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x = (x, y) is exactly on the line source, the integral in Eq. (3.8) will be weakly singular with
a finite value. In other words, in the two-dimensional case, the temperature has a finite value
at points exactly on the curved line heat source. In this case, the integral in Eq. (3.8) can be
calculated by various methods such as the weighted Gaussian integration (Stroud and Secrest,
1996), transformation of variable (Telles, 1987) and subtraction of singularity (Aliabadi 2002)
method. In this research, the weighted Gaussian integration method is used.

3.2. Curved line heat source in three-dimensional problems

Similar to 2D, the intensity per unit length of the quadratic line heat source at the starting
point (x1, y1, z1), middle point (x2, y2, z2) and end point (x3, y3, z3) are assumed g1, g2 and g3,
respectively.

Substituting τ∗ in the 3D case from Eq. (2.4) into Eq. (3.3) results in

τp(x) =
1

4πk

∫

L

s(ξ)

r(x, ξ)
dl (3.9)

where r(x, ξ) =
√

(x− xs)2 + (y − ys)2 + (z − zs)2 is the distance between the field point
x = (x, y, z) and the source point ξ = (xs, ys, zs) on the line heat source. xs, ys, and zs can be
expressed as follows

xs = (N1x1 +N2x2 +N3x3) ys = (N1y1 +N2y2 +N3y3)

zs = (N1z1 +N2z2 +N3z3)
(3.10)

The infinitesimal element dl in Eq. (3.9) can be expressed as

dl =
√

dx2s + dy
2
s + dz

2
s = Jdη (3.11)

where

J =

√

√

√

√

√

(

3
∑

j=1

xj
dNj
dη

)2

+

(

3
∑

j=1

yj
dNj
dη

)2

+

(

3
∑

j=1

zj
dNj
dη

)2

(3.12)

Therefore, Eq. (3.9) can be written as follows

τp(x) =
1

4πk

1
∫

−1

N1g1 +N2g2 +N3g3
r(η)

J dη (3.13)

Similar to the 2D case, the integral in equation (3.13) can be evaluated using standard numerical
integration methods such as the GQM. According to the integral in equation (3.13), it is clear
that if the field point x = (x, y, z) is exactly on the curved line source, the integral in Eq. (3.13)
will be a strongly singular integral without any finite value. In other words, in the 3D case, the
temperature at points on the curved line source does not have a finite value.

3.3. Curved surface heat source in 3D problems

We consider a heat source distributed over a curved surface in a 3D domain. The shape of
the surface source and its intensity function are assumed arbitrarily and sufficiently complicated.
The surface of the heat source is discretized by several quadrilateral surfaces. Each quadrilateral
surface heat source has a quadratic shape with a quadratic variation of the intensity over it.
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Fig. 3. A quadratic surface heat source

In this part, the formulation for treatment of a quadratic surface heat source is presented. A
quadratic surface heat source, which is described by 8 points, is shown in Fig. 3.

The intensity per unit area of the quadratic surface heat source is written as follows

s(ξ1, ξ2) =
8
∑

i=1

Ni(ξ1, ξ2)gi (3.14)

where g1, g2, . . . , g8 are the intensities per unit area at 8 points of the source, ξ1 and ξ2 are local
coordinates which have a variation between −1 and 1 in the source. The shape functions Ni in
terms of ξ1 and ξ2 are expressed as follows (Becker, 1992)

N1 =
−1

4
(1− ξ1)(1 − ξ2)(1 + ξ1 + ξ2) N2 =

1

2
(1− ξ21)(1− ξ2)

N3 =
−1

4
(1 + ξ1)(1 − ξ2)(1− ξ1 + ξ2) N4 =

1

2
(1 + ξ1)(1 − ξ

2
2)

N5 =
−1

4
(1 + ξ1)(1 + ξ2)(1− ξ1 − ξ2) N6 =

1

2
(1− ξ21)(1 + ξ2)

N7 =
−1

4
(1− ξ1)(1 + ξ2)(1 + ξ1 − ξ2) N8 =

1

2
(1− ξ1)(1 − ξ

2
2)

(3.15)

The domain integral in Eq. (2.5) associated to the quadratic surface heat source is given as
follows

τp(x) =

∫

A

s(ξ)

k
τ∗(x, ξ) dA (3.16)

where dA is an infinitesimal area element on the quadratic surface heat source. Substituting τ∗

in the 3D case from Eq. (2.4) into Eq. (3.16) results in

τp(x) =
1

4πk

∫

A

s(ξ)

r(x, ξ)
dA (3.17)

where r(x, ξ) is the distance between the field point x = (x, y, z) and the source points
ξ = (xs, ys, zs) on the quadratic surface heat source. xs, ys and zs can be expressed in terms of
the 8 shape functions as follows
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xs(ξ1, ξ2) =
8
∑

i=1

Ni(ξ1, ξ2)xi ys(ξ1, ξ2) =
8
∑

i=1

Ni(ξ1, ξ2)yi

zs(ξ1, ξ2) =
8
∑

i=1

Ni(ξ1, ξ2)zi

(3.18)

The infinitesimal area element dA can be written as follows (Becker, 1992)

dA = J(ξ1, ξ2) dξ1 dξ2 (3.19)

where

J =
√

(Jx)2 + (Jy)2 + (Jz)2 (3.20)

and

Jx =
∂ys
∂ξ1

∂zs
∂ξ2
−
∂zs
∂ξ1

∂ys
∂ξ2

Jy =
∂zs
∂ξ1

∂xs
∂ξ2
−
∂xs
∂ξ1

∂zs
∂ξ2

Jz =
∂xs
∂ξ1

∂ys
∂ξ2
−
∂ys
∂ξ1

∂xs
∂ξ2
(3.21)

Substituting Eqs. (3.19) and (3.14) into Eq. (3.17) results in

τp(x) =
1

4πk

1
∫

−1

1
∫

−1

∑8
i=1Ni(ξ1, ξ2)gi
r(ξ1, ξ2)

J(ξ1, ξ2) dξ1 dξ2 (3.22)

The integral in Eq. (3.22) can be calculated using standard 2D numerical integration methods
such as the GQM.
In the case that the field point x is exactly on the surface of the heat source, the integral in Eq.

(3.22) will be weakly singular with a finite value. In other words, in the three-dimensional case,
temperatures at points on a surface heat source have finite values. In this case, the integral in Eq.
(3.22), which is weakly singular, can be calculated by various methods such as the transformation
of variable and subtraction of singularity method (Aliabadi, 2002). In this research, the method
of transformation of the variable is used for these cases.

4. Numerical examples

In this Section, two 2D and two 3D examples containing different kinds of curved heat sources
are presented. In each example, the results computed by the presented MFS in comparison with
the BEM and FEM are presented. Source codes are developed in MATLAB software for analysis
of the examples using the MFS and BEM. ANSYS package is used for analysis of the examples
using the FEM. The computations are implemented on a laptop with an Intel(R) (Intel, Inc.,
Santa Clara, CA, USA) Core(TM) i7-2670QM CPU of 2.20GHz, on 64-bit Windows operating
system with 8.00 GB RAM. In all examples, the thermal conductivity is k = 60W/(m◦C).

4.1. A circular domain including a circular heat source

In this example, according to Fig. 4, a circular domain with R = 0.5 is considered. This
problem is analyzed under the Dirichlet boundary condition with τB = 10

◦C. A curved heat
source which is distributed over a circle with the radius r = 0.25m is considered. The strength
of the heat source is considered to be constant over the circle and equal to s = 4000W/m. The
pseudo boundary Γ ′ is considered to be a circle with radius R′ = 2.5m (5 times of R). Only
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4 sources are considered on this pseudo-boundary. The circular heat source is modeled by only
four quadratic line heat sources. The obtained results by the proposed MFS are compared with
those of the BEM (32 linear boundary elements) and FEM (9461 quadratic elements) presented
in (Mohammadi et al., 2016). The temperature results along the vertical diameter of the circle
are shown in Fig. 5. As can be seen, the presented MFS formulation yields very accurate results.

Fig. 4. A circular domain including a circular heat source

Fig. 5. Temperature on the vertical diameter (y-axis) of the circle obtained by the FEM, BEM and MFS

4.2. A rectangular domain including a heat source with an elliptical shape and non-uniform
intensity

In this example, a heat conduction problem over a 0.15×0.3m rectangle containing a curved
heat source is considered. Figure 6a shows the geometry and thermal boundary conditions of
the problem.
An elliptical curved line heat source centered at (0.085, 0.065) is considered in the domain.

The lengths of the horizontal and vertical radii of the ellipse are r1 = 0.04m and r2 = 0.02m,
respectively. The heat source intensity is considered to be a function of β ∈ [0, 2π] as follows

s = 40000(1 + cos β)W/m (4.1)

where β is the angular coordinate on the heat source measured from a horizontal axis passing
through the center of the ellipse (Fig. 6a).



1132 M. Mohammadi et al.

Fig. 6. A rectangle with an elliptical heat source: (a) geometry and boundary conditions,
(b) configuration of collocation and source points

In the proposed MFS, the elliptical heat source is modeled by only eight quadratic heat
sources. 48 source points and 48 collocation points are considered for the MFS analysis. The
configuration of collocation and source points is depicted in Fig. 6b. The locations of source
points are determined according to the method suggested by Hematiyan et al. (2018). The ratio
of the distance from the source point to its corresponding collocation point to the distance
from the same source point to the neighboring collocation point is 0.85. By this configuration,
a solution without undesired oscillation is obtained (Hematiyan et al., 2018).

Fig. 7. The FEM, BEM and MFS results for temperature along the line AB of the rectangle with an
elliptical heat source

The temperature results along the line AB (Fig. 6a) are depicted in Fig. 7. In this figure,
the results based on the presented formulation are compared with those of the BEM (48 linear
boundary elements) and FEM (4356 quadratic elements) presented in (Mohammadi et al., 2016).
As it can be seen, the presented MFS and the BEM yield accurate results. The computational
times (in seconds) for solving this problem using the proposed MFS and the BEM based on
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(Mohammadi et al., 2016) have been 2.11 and 6.24, respectively. The reported results indicate
that the proposed MFS is more efficient than the BEM for analysis of this example.

4.3. A cubic domain including two circular heat sources with non-uniform intensity

In this example, as shown in Fig. 8, a cube with edges of L = 10m, including two circular
heat sources, is considered. All faces are kept at τ = 0◦C. The radius of both circular heat
sources is r = 2.5m.

Fig. 8. A cube with two circular heat sources

The first circular heat source is centered at (5, 6, 5) and the second one is centered at (5, 4, 5).
The strengths of the sources are considered to be functions of β ∈ [0, 2π] with the following forms

s1 = 10000(1 + cos β)W/m s2 = 20000(1 + cos β)W/m (4.2)

where β is the angular coordinate on the heat sources as shown in Fig. 8.
In the proposed MFS, each circular heat source is modeled by only four quadratic line heat

sources. 100 collocation points are considered on each face of the cube. Therefore, 600 colloca-
tion points with 600 corresponding source points which are located on the cube with edges of
L′ = 14m are considered. The configuration of the collocation points and their corresponding
source points on a face of the cube is shown in Fig. 9.

Fig. 9. The configuration of collocation and source points on a face of the cube

The temperature results along the line x = z = 5 and the line x = y = 5 are shown in
Fig. 10. In this figure, the obtained results by the proposed MFS are compared with those
of the BEM (600 constant elements) and FEM (56669 3D quadratic elements) presented in
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(Mohammadi et al., 2016). As it can be seen, the presented MFS and the BEM formulation
yield very accurate results. However, the running CPU time for the BEM is almost 1.8 times the
MFS. The computations take 48.1 s for the presented MFS while they take 87.0 s for the BEM.

Fig. 10. Temperature on the line (a) x = z = 5 and (b) x = y = 5 of the cube with circular heat sources
obtained by the FEM, BEM and MFS

4.4. A spherical domain including a cylindrical heat source with a non-uniform intensity

In the last example, a spherical domain with the radius R = 1m, centered at (0, 0, 0) is
considered. The surface of the sphere is kept at τ = 0◦C. A surface heat source with a cylindrical
shape is included in the domain. The radius, center of the base, and the height of the cylindrical
heat source are 0.2m, (0, 0, 0), and 0.8m, respectively. A cut-out part of the spherical domain
and the cylindrical heat source is shown in Fig. 11a. The intensity per unit area of the source
is considered to be a function of β ∈ [0, 2π] (angular coordinate on the heat source, measured
from the x-axis) and the y-coordinate with the following form

s = 20000y(1 + cos β)W/m2 (4.3)

In the proposed MFS, the cylindrical heat source is modeled by only eight quadrilateral quadratic
heat sources. The pseudo boundary Γ ′ is considered to be a sphere with the radius R′ = 1.4m.
98 collocation points and 98 sources are considered for the MFS analysis of the problem. The
configuration of collocation and source points are shown in Fig. 11b.

Fig. 11. The spherical domain including a cylindrical heat source: (a) a cut-out part of the domain,
(b) the configuration of collocation and source points

So far, this kind of problem has not been solved by the BEM. The obtained results by the
presented MFS are compared with those of the FEM. The commercial software package, ANSYS,
is employed for the FE analysis. In the FE analysis, the heat source which is concentrated over
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a cylindrical surface should be modeled as a cylindrical volume with a small thickness. The
inner and outer radius of this cylindrical volume are considered as ri = 0.18m and r0 = 0.22m,
respectively. The finite element discretization of the domain with 3D quadratic elements is shown
in Fig. 12. The whole domain is discretized with 48 178 elements and 64 869 nodes. In order to
visualize the position of the curved surface heat source inside the domain, only a cut-out part of
the FE mesh is shown in Fig. 12a. The nodal arrangement of the mesh is depicted in Fig. 12b.

Fig. 12. The finite element discretization of the sphere with a cylindrical heat source:
(a) 48 178 elements, (b) 64 869 nodes

The temperature results on the y- and z-axes are depicted in Fig. 13. As it can be observed,
the MFS results are in an excellent agreement with the FEM solutions. noteworthy is the fact
that the modeling of the problem in the proposed MFS is much simpler than in the FEM.

Fig. 13. The FEM, and MFS results for temperature along (a) the y-axis and (b) the z-axis in the
sphere with a cylindrical heat source

5. Conclusions

A formulation based on the MFS for analysis of 2D and 3D heat conduction problems in iso-
tropic media containing heat sources concentrated on arbitrary curved lines/surfaces has been
presented. The shape and the variation of the intensity of the sources can be arbitrarily and
sufficiently complicated.
For 2D problems, curved line heat sources while for 3D problems, curved surface heat sour-

ces have been considered. The equations derived for 2D curved line heat sources showed that
temperature at points exactly on the source had a finite value. The formulation for 3D curved
line heat sources showed that the temperature at points exactly on those sources had an infinite
value but the temperature had a finite value at points on the curved surface heat source.

For reliable modeling of a concentrated heat source in the FEM, the source should be modeled
as a separated region with a small thickness. Moreover, a large number of internal elements and
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nodes should also be considered for the modeling of the source. However, these sources can be
effectively modeled in the BEM as well as the proposed MFS without considering any internal
cells or points. To show the performance of the presented MFS formulation, four numerical
examples have been given. It was observed that the proposed method gave accurate results
even with a small number of source points and it was found that the computational cost of the
presented method was much smaller than the BEM.
Some modified/improved versions of the MFS such as the singular boundary method (Gu et

al., 2012) have been presented too. The proposed formulation for the implementation of curved
heat sources can be employed for these methods too.

References

1. Ahmadabadi M.N., Arab M., Ghaini F.M., 2009, The method of fundamental solutions for
the inverse space-dependent heat source problem, Engineering Analysis with Boundary Elements,
33, 10, 1231-1235

2. Aliabadi M.H., 2002, The Boundary Element Method, Volume 2, Applications in Solids and
Structures, John Wiley & Sons

3. Atkinson K.E., 1985, The numerical evaluation of particular solutions for Poisson’s equation,
IMA Journal of Numerical Analysis, 5, 3, 319-338

4. Becker A.A., 1992,The Boundary Element Method in Engineering: A Complete Course, McGraw-
-Hill Book Company

5. Chao C.K., Tan C.J., 2000, On the general solutions for annular problems with a point heat
source, Journal of Applied Mechanical, 67, 3, 511-518

6. Fairweather G., Karageorghis A., 1998, The method of fundamental solutions for elliptic
boundary value problems, Advances in Computational Mathematics, 9, 1-2, 69-95

7. Golberg M.A., 1995, The method of fundamental solutions for Poisson’s equation, Engineering
Analysis with Boundary Elements, 16, 3, 205-213

8. Gu Y., Chen W., He X.Q., 2012, Singular boundary method for steady-state heat conduction
in three dimensional general anisotropic media, International Journal of Heat and Mass Transfer,
55, 17, 4837-4848

9. Han J.J., Hasebe N., 2002, Green’s functions of point heat source in various thermoelastic
boundary value problems, Journal of Thermal Stresses, 25, 2, 153-167

10. Hematiyan M.R., Haghighi A., Khosravifard A., 2018, A two-constrained method for ap-
propriate determination of the configuration of source and collocation points in the method of
fundamental solutions for 2D Laplace equation, Advances in Applied Mathematics and Mechanics,
10, 3, 554-580

11. Hematiyan M.R., Mohammadi M., Aliabadi M.H., 2011, Boundary element analysis of two-
and three-dimensional thermo-elastic problems with various concentrated heat sources, Journal of
Strain Analysis for Engineering Design, 46, 3, 227-242

12. Hidayat M.I.P., Ariwahjoedi B., Parman S., Rao, T.V.V.L., 2017, Meshless local B-spline
collocation method for two-dimensional heat conduction problems with nonhomogenous and time-
dependent heat sources, Journal of Heat Transfer, 139, 7, 071302

13. Karami G., Hematiyan M.R., 2000a, A boundary element method of inverse non-linear heat
conduction analysis with point and line heat sources, International Journal for Numerical Methods
in Biomedical Engineering, 16, 3, 191-203

14. Karami G., Hematiyan M.R., 2000b, Accurate implementation of line and distributed sources
in heat conduction problems by the boundary-element method, Numerical Heat Transfer, Part B,
38, 4, 423-447



An efficient analysis of steady-state heat conduction... 1137

15. Kołodziej J.A., Mierzwiczak M., Ciałkowski M., 2010, Application of the method of funda-
mental solutions and radial basis functions for inverse heat source problem in case of steady-state,
International Communications in Heat and Mass Transfer, 37, 2, 121-124

16. Le Niliot C., 1998, The boundary element method for the time varying strength estimation of
point heat sources: Application to a two dimensional diffusion system, Numerical Heat Transfer,
Part B, 33, 3, 301-321
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